

#### SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583 <u>OUESTION BANK (DESCRIPTIVE)</u>

Subject with Code: RTOS (20EC4104)

Course & Branch: M.Tech-VLSI

**Regulation:** R20

Year & Sem: I-M.Tech & II-Sem

#### UNIT –I OPERATING SYSTEMS

| 1  |                                                                                  |                                                                         |           |       |  |  |
|----|----------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------|-------|--|--|
| 1  | Writ                                                                             | te a short note about a)Time services b) Scheduling Mechanisms          | [L1][CO1] | [12M] |  |  |
|    |                                                                                  |                                                                         |           |       |  |  |
| 2  | a)                                                                               | Name the features Real time operating system.                           | [L1][CO1] | [5M]  |  |  |
|    | b)                                                                               | Define an operating system? Specify the comparisons between General and | [L1][CO1] | [7M]  |  |  |
|    |                                                                                  | Real time systems                                                       |           |       |  |  |
| 3  | a)                                                                               | Discuss in brief about the Interrupt services.                          | [L1][CO1] | [5M]  |  |  |
|    | b)                                                                               | Mention the Importance of Memory management.                            | [L2][CO1] | [7M]  |  |  |
| 4  | a)                                                                               | What is the need for real time system? Explain with examples.           | [L2][CO1] | [6M]  |  |  |
|    | b)                                                                               | What are the specific requirements in real time system?                 | [L2][CO1] | [6M]  |  |  |
| 5  | Writ                                                                             | e a short notes on a) reactive system b) time driven c)Deadline driven  | [L2][CO1] | [12M] |  |  |
|    | Real time systems                                                                |                                                                         |           |       |  |  |
| 6  | Exp                                                                              | laining the various application areas of real time system with example. | [L4][CO1] | [12M] |  |  |
| 7  | Describe the overview of design process of embedded system [L2][CO1]             |                                                                         |           |       |  |  |
|    | a) M                                                                             | b) Message Priority Inheritance                                         |           |       |  |  |
| 8  | Explain detail about the typical issues in Real time computing.[L1][CO1]         |                                                                         |           |       |  |  |
| 9  | Explain in detail about the basic functions in real time computing. [L2][CO1] [1 |                                                                         |           |       |  |  |
| 10 | Desc                                                                             | ribe the modeling/verifying design tools in real time operating system. | [L2][CO1] | [12M] |  |  |

# UNIT –II

### **Introduction to UNIX**

| 1 | Writ  | e the function of the following:                                         | [L1][CO2] | [12M] |
|---|-------|--------------------------------------------------------------------------|-----------|-------|
|   | i)Ls  | eek ii) Vfork iii) waitpid iv) Close v) wait vi) Exit                    |           |       |
| 2 | Illus | trate three examples for specifying hard time constraints.               | [L2][CO2] | [12M] |
| 3 | Exp   | lain in brief about that overview of Commands in process.                | [L2][CO2] | [12M] |
| 4 | a)    | Explain the Process control phenomenon based on different UNIX commands. | [L2][CO2] | [8M]  |
|   | b)    | What is meant by semaphore? Mention few advantages of shared memory.     | [L2][CO2] | [4M]  |
| 5 | a)    | Explain the salient features of Semaphore.                               | [L1][CO2] | [7M]  |
|   | b)    | Write in brief about that Message Queues.                                | [L1][CO2] | [5M]  |

| Course Code: 20EC4104 |                                                                    |                                                     | <b>R20</b> |       |
|-----------------------|--------------------------------------------------------------------|-----------------------------------------------------|------------|-------|
| 6                     | Disc                                                               | uss in brief about Pipes.                           | [L1][CO1]  | [12M] |
|                       |                                                                    | i) popen ii) pclose                                 |            |       |
| 7                     | M.                                                                 | a a short note shout EIEOs with any related example |            | [12M] |
| /                     | Write a short note about FIFOs with any related example.           |                                                     | [L1][CO2]  |       |
| 8                     | What is meant by File sharing? Explain that with suitable example. |                                                     | [L1][CO2]  | [12M] |
| 9                     | Discuss brief about inter process communication.                   |                                                     | [L1][CO2]  | [12M] |
| 10                    | a)                                                                 | Explain what is Shared memory concept.              | [L2][CO2]  | [6M]  |
|                       | b)                                                                 | Write about lseek, Read, write functions.           | [L1][CO2]  | [6M]  |
|                       |                                                                    |                                                     |            |       |

# UNIT –III

#### **REAL TIME SYSTEMS**

|    | a)<br>b)  | Differentiate hard vs soft real time systems                                 | [L2][CO3] | [5M]  |
|----|-----------|------------------------------------------------------------------------------|-----------|-------|
|    | b)        |                                                                              |           |       |
|    |           | Illustrate resource parameters of Jobs and Parameters of resources in real   | [L3][CO3] | [7M]  |
| •  |           | time systems.                                                                |           |       |
| 2  | a)        | What are different temporal parameters of real time systems during workload? | [L2][CO3] | [6M]  |
|    | b)        | With a neat sketch, explain periodic task model of real time systems.        | [L1][CO3] | [6M]  |
| 3  | a)        | What is RTOS? Give one practical example where RTOS is used?                 | [L1][CO3] | [7M]  |
|    | b)        | Briefly describe the Hard real time systems.                                 | [L2][CO3] | [5M]  |
| 4  | a)        | Define: i) Soft real time systems ii) Validation iii) Statistical            | [L1][CO3] | [6M]  |
|    |           | constraints                                                                  |           |       |
|    | b)        | What are the Data types used in real time systems?                           | [L3][CO3] | [6M]  |
| 5  | a)        | Write about the Periodic task model.                                         | [L2][CO3] | [6M]  |
|    | b)        | Discuss about task and task states in Real time operating systems.           | [L2][CO3] | [6M]  |
| 6  | Explain i | in brief about Scheduling Hierarchy?                                         | [L2][CO3] | [12M] |
| 7  | a)        | Discuss in brief about that Hard and Soft timing constraints.                | [L3][CO3] | [6M]  |
|    | b)        | What is meant by Release times, Deadlines and Timing Constraints?            | [L1][CO3] | [6M]  |
| 8  | Write a S | hort note about that Processors and Resources?                               | [L2][CO3] | [12M] |
| 9  | a)        | Specify Precedence graph and Task graph.                                     | [L2][CO3] | [7M]  |
|    | b)        | Write a few words about Data Dependency.                                     | [L1][CO3] | [5M]  |
| 10 | Elaborate | ly explain the Resource parameters of job and parameters of resources.       | [L3][CO3] | [12M] |

# UNIT –IV

# APPROACHES TO REAL TIME SCHEDULING

| 1 | a) | How effective release times and deadlines are useful in real time scheduling? | [L2][CO4] | [6M] |
|---|----|-------------------------------------------------------------------------------|-----------|------|
|   | b) | Write a short note on Clock driven, weighted round robin and priority driven. | [L1][CO4] | [6M] |
| 2 | a) | Explain Schedule mechanism of real time operating systems.                    | [L2][CO4] | [6M] |

| Course Code: 20EC4104 |        |                                                                              | <b>R20</b> |       |
|-----------------------|--------|------------------------------------------------------------------------------|------------|-------|
|                       | b)     | What is meant by time services? How those are helpful in operating function? | [L1][CO4]  | [6M]  |
| 3                     | a)     | Explain Fault causes and different fault types in RTOS.                      | [L3][CO4]  | [7M]  |
|                       | b)     | Describe Redundancy in terms of hardware, software and time management.      | [L2][CO4]  | [5M]  |
| 4                     | a)     | Define task and explain with diagram all the five states of a task.          | [L1][CO4]  | [4M]  |
|                       | b)     | Briefly explain priority driven approach and weighted round robin approach.  | [L2][CO4]  | [8M]  |
| 5                     | Define | e Software redundancy, time redundancy and Information                       | [L2][CO4]  | [12M] |
|                       | redund | lancy.                                                                       |            |       |
| 6                     | a)     | Describe Hardware and software interrupt priorities.                         | [L3][CO4]  | [6M]  |
|                       | b)     | Write short note on Precedence constraints and data dependency.              | [L2][CO4]  | [6M]  |
| 7                     | a)     | Explain about the Round robin Scheduling algorithms?                         | [L2][CO4]  | [7M]  |
|                       | b)     | Differentiate weighted round robin and priority driven approaches            | [L2][CO4]  | [5M]  |
| 8                     | Compa  | re and Contrast the offline and online scheduling?                           | [L1][CO4]  | [12M] |
| 9                     | a)     | Explain Offline and online schedule policies.                                | [L2][CO4]  | [6M]  |
|                       | b)     | Explain Transaction processing in real time systems, Lay emphasis on         | [L2][CO4]  | [6M]  |
|                       |        | priority.                                                                    |            |       |
| 10                    | a)     | Explain Memory management in RTOS environment.                               | [L2][CO4]  | [7M]  |
|                       | b)     | Write the Salient features of Pre emptive Priority.                          | [L1][CO4]  | [5M]  |

# UNIT –V

### CASE STUDIES-VX WORKS

| 1  | Distinguish between the features of MUCOS and vx works RTOS. [L3][CO5] |                                                                         |           | [12M] |  |  |
|----|------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------|-------|--|--|
| 2  | a)                                                                     | Write a note on integrated failure handling.                            | [L1][CO5] | [6M]  |  |  |
|    | b)                                                                     | Explain in brief about that Memory management.                          | [L2][CO5] | [6M]  |  |  |
| 3  | a)                                                                     | With suitable example explain about pre emptive scheduling in VX works. | [L4][CO5] | [7M]  |  |  |
|    | b)                                                                     | Explain the significance of context switches in an I/O system.          | [L2][CO5] | [5M]  |  |  |
| 4  | a)                                                                     | Compare Process, Scheduling and Interrupt Managements in RT Linux.      | [L3][CO5] | [6M]  |  |  |
|    | b)                                                                     | With a neat block diagram explain process management in RT Linux.       | [L2][CO5] | [6M]  |  |  |
| 5  | a)                                                                     | Explain the task Priority function 3 options on spawning.               | [L2][CO5] | [4M]  |  |  |
|    | b)                                                                     | Describe memory related functions of MUCOS.                             | [L3][CO5] | [8M]  |  |  |
| 6  | a)                                                                     | Explain how process management will be done in RT Linux.                | [L2][CO5] | [8M]  |  |  |
|    | b)                                                                     | Explain the Salient features of Semaphore.                              | [L3][CO5] | [4M]  |  |  |
| 7  | a)                                                                     | Compare Process, Scheduling and Interrupt Managements in RT Linux.      | [L2][CO5] | [6M]  |  |  |
|    | b)                                                                     | With a neat block diagram explain process management in RT Linux        | [L2][CO5] | [6M]  |  |  |
| 8  | Write                                                                  | in short about State Transition diagram.                                | [L1][CO5] | [12M] |  |  |
| 9  | a)                                                                     | Write a note on integrated failure handling.                            | [L1][CO5] | [5M]  |  |  |
|    | b)                                                                     | Explain in brief about that Memory management.                          | [L2][CO5] | [7M]  |  |  |
| 10 | a)                                                                     | Explain the task Priority function 3 options on spawning.               | [L2][CO5] | [6M]  |  |  |
|    | b)                                                                     | Describe memory related functions of MUCOS.                             | [L2][CO5] | [6M]  |  |  |
|    | <b>Pronoved by:</b> Dr. D. Promisiumer                                 |                                                                         |           |       |  |  |

**Prepared by**: Dr.R.Premkumar